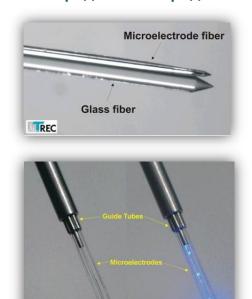
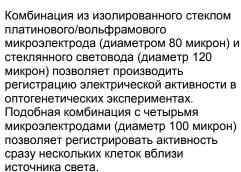


Оптогенетика

Световоды

Световоды от Thomas RECORDING представляют собой стеклянную сердцевину, покрытую оболочкой, сделанной также из стекла. Диаметр сердцевины 108 микрон, полный диаметр световода с оболочкой 120 микрон. Световоды могут иметь тупой либо заостренный наконечник. Конусовидные концы световодов облегчают проникновение в ткани, обеспечивая сферическое свечение высокой интенсивности.


Вращающиеся соединители для световодов



В оптогенетических экспериментах на активных животных часто возникает проблема повреждения световода из-за перемещения подопытного животного. Чтобы этого избежать можно использовать вращающиеся соединители для световодов.

Артикул	Цвет	Длина	Мощно
		волны	СТЬ
M365F1	УФ	365 nm	4.1 mW
M385F1	УФ	385 nm	10.7 mW
M405F1	УФ	405 nm	3.7 mW
M420F1	Фиолетовый	420 nm	1.7 mW
M455F1	Синий	455 nm	11.0 mW
M470F1	Синий	470 nm	10.1 mW
M490F1	Голубой	490 nm	2.3 mW
M505F1	Циан	505 nm	8.0 mW
M530F1	Зеленый	530 nm	5.1 mW
M565F1	Салатный	565 nm	2.0 mW
M590F1	Янтарный	590 nm	3.2 mW
M617F1	Оранжевый	617 nm	10.8 mW
M625F1	Красный	625 nm	10.1 mW
M660F1	Красный	660 nm	14.5 mW
M735F1	Красный	735 nm	1.9 mW
M780F1	ИК	780 nm	1.5 mW
M850F2	NK	850 nm	13.4 mW
M880F1	ИК	880 nm	2.8 mW
M940F1	NK	940 nm	6.5 mW
M970F1	ИК	970 nm	0.2 mW
M1050F1	ИК	1050 nm	1.4 mW
MWWHF	Белый теплый	3000 Ke	7.0 mW
1d			
MCWHF1	Белый	5600 Ke	7.0 mW
d	холодный		

Оптроды и оптетроды

- Lima S.Q., Hromádka T., Znamenskiy P., Zador A.M. PINP: A new method of tagging neuronal populations for identification during in vivo electrophysiological recording // PLos ONE, July 2009, Vol 4, Issue 7
- F. Mechler, J. D. Victor, I. E. Ohiorhenuan, A. Schmid, H. Quin, "Three-dimensional localization of neurons in cortical tetrode recordings", 2011, Ch. 2.

Мощные светодиодные источники света

Высокомощные светодиодные источники света от Thorlabs идеально подойдут для оптогенетических экспериментов, в которых требуется засветка клеток/тканей определенной длиной волны. Следует отметить богатый выбор длин волн и удобство подключения световодов.

• Большой выбор длин волн, включая УФ, видимый диапазон и ИК-излучение

REC

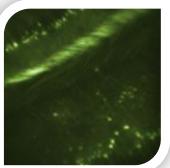
- Включает идентификационный чип (EEPROM), содержащий параметры устройства
- Оптимизированные термические характеристики дают возможность стабилизировать выходную мощность
- Соединители SMA идеально подходят для мультимодальных соединительных световодов

Усиливающие фотодетекторы

В оптогенетических экспериментах часто требуется наблюдение слабофлюоресцирующих красителей. Для усиления подобной флюоресценции могут быть использованы усиливающие фотодетекторы от Thorlabs.

- Пять моделей покрывают диапазон длин волн от 200 до 1100нм
- Низкошумящие широкополосные усилители
- Фиксированная и переключаемая функция усиления
- Модель PDF10A чувствительна вплоть до фемтоватт
- Выходной диапазон от 0 до 10 Вольт
- Линейный источник питания включен в поставку

nVista HD

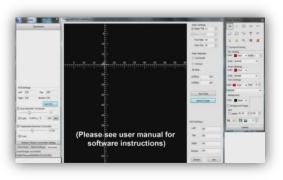

Оригинальное решение Inscopix nVista HD позволяет получать живое изображение нейрональной активности у мышей в поведенческом эксперименте. Система nVista HD основана на интегрированном миниатюрном флюоресцентном микроскопе. Она позволяет наблюдать кальциевую динамику у большого количества отдельных нейронов и у многих мышей параллельно в одном и том же поведенческом эксперименте

Уникальные возможности in vivo микроскопа

- **Имаджинг на клеточном уровне** запись спайков индивидуальных нейронов в реальном времени.
- **Большое поле зрения** получение изображения до 1000 нейронов одновременно.
- Свободное поведение съем активности мозга у свободно перемещающихся животных.

Nat Methods. 2011 Sep 11;8(10):871-8. doi: 10.1038/nmeth.1694. Miniaturized integration of a fluorescence microscope.

Polygon400 Multiwavelength Dynamic Spatial Illuminator


Осветитель с программируемой динамически изменяемой длиной волны и несколькими независимымм регионами освещения

Особенности

- Программируемое мультиволновое структурированное освещение
- Произвольная форма и размер освещаемых областей
- Одновременное освещение нескольких областей интереса
- Отсутствие вентилятора и вибраций
- Широкий набор доступных длин волн светодиодов
- До 4000 кадров/сек
- Работа с встроенными светодиодами или с внешним источником света, подключаемым через световод
- Адаптеры для подключения к любым микроскопам
- Интерфейс USB 2.0, TTL триггер
- DLP панель 416К-пикселов (1366 x 768)
- ПоддержкаLED и газоразрядных осветителей
- Высокая светосила
- Доступны внешние контроллеры всетодиодов для быстрого переключения
- Интуитивно понятное программное обеспечение

